IPB
ЛогинПароль:

> Прочтите прежде чем задавать вопрос!

1. Заголовок темы должен быть информативным. В противном случае тема удаляется ...
2. Все тексты программ должны помещаться в теги [code=pas] ... [/code].
3. Прежде чем задавать вопрос, см. "FAQ", если там не нашли ответа, воспользуйтесь ПОИСКОМ, возможно такую задачу уже решали!
4. Не предлагайте свои решения на других языках, кроме Паскаля (исключение - только с согласия модератора).
5. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
6. Одна тема - один вопрос (задача)
7. Проверяйте программы перед тем, как разместить их на форуме!!!
8. Спрашивайте и отвечайте четко и по существу!!!

> Метод Гаусса, Проблемка с решением этим методом
Relrin
сообщение 24.02.2011 10:22
Сообщение #1


Пионер
**

Группа: Пользователи
Сообщений: 64
Пол: Мужской

Репутация: -  0  +


Сейчас сижу пишу программку, которая вычисляет СЛАУ методом Гаусса. Сейчас возникло несколько вопросов и проблем, на которые нужен ответ smile.gif :
1) Где нужно исправить переменные в процедуре Gauss, чтобы она могла решить не только случаи, когда количество переменных равно количеству уравнений, но и случай, когда количество переменных меньше кол-ва уравнений. Например:
x1 + x2 + x3 = 3
2x1 +3x2 +2x3= 7
3x1 + x2 + x3 = 5
5x1 - x2 - x3 = 3
2) Необходимость помочь раскомментировать процедуру Gauss(взял с этого форума процедуру, как и ввод/вывод), поскольку не очень понимаю ход решения (хотя, очень похоже на решение "обратным ходом"). Поэтому хочется, чтобы помогли разобраться с этим кодом

Поскольку код получился чуть более чем на 400 строк, то приложу исходник.

Сообщение отредактировано: Relrin - 24.02.2011 10:24


Прикрепленные файлы
Прикрепленный файл  pr1.pas ( 9.44 килобайт ) Кол-во скачиваний: 177
 Оффлайн  Профиль  PM 
 К началу страницы 
+ Ответить 

Сообщений в этой теме


 Ответить  Открыть новую тему 
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия 20.07.2025 14:18
Хостинг предоставлен компанией "Веб Сервис Центр" при поддержке компании "ДокЛаб"