![]() |
1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!
![]() |
Reflex |
![]()
Сообщение
#1
|
![]() Пионер ![]() ![]() Группа: Пользователи Сообщений: 118 Пол: Женский Репутация: ![]() ![]() ![]() |
как сравнить эти да числа?? и какой вообще ответ?
-------------------- Нам не дано предугадать как наше слово отзовется...
|
![]() ![]() |
Michael_Rybak |
![]()
Сообщение
#2
|
Michael_Rybak ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 1 046 Пол: Мужской Реальное имя: Michael_Rybak Репутация: ![]() ![]() ![]() |
Если числа натуральные, то так.
a^b ? b^a Логарифмируем по основанию е (при этом знак неравенства не меняется): ln (a^b) ? ln (b^a) b ln a ? a ln b Числа натуральные, можно делить: (ln a) / a ? (ln b) / b Получается, нужно сравнить значения функции f(x) = (ln x) / x в точках a и b Исследуем эту функцию. Найдем экстремумы на [1; +∞]. Берем производную ((ln x)/x)' = ((ln x)' x - x' (ln x)) / x^2 = ((1/x)x - 1(ln x)) / x^2 = (1 - ln x) / x^2 Таким образом, на [1; +∞] единственным нулем производной будет x = e. При бОльших x функция монотонно убывает, поэтому если a>2 и b>2, то из a>b следует (ln a) / a < (ln b) / b, откуда a^b < b^a. Случаи, когда одно из чисел равно 2 или 1, тривиальны. Если же числа действительные, то сравнить сложнее, т.к. может выполняться и равенство a^b=b^a, когда одно число больше е, а другое - меньше. Там надо смотреть подробнее. |
![]() ![]() |
![]() |
Текстовая версия | 26.07.2025 10:42 |