![]() |
1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!
![]() |
helpmeplease |
![]()
Сообщение
#1
|
Пионер ![]() ![]() Группа: Пользователи Сообщений: 59 Пол: Женский Репутация: ![]() ![]() ![]() |
ПОМОГИТЕ ПЛИЗ С РЕШЕНИЕМ ХОТЯ БЫ НЕКОТОРЫХ ИЗ ЭТИХ ЗАДАЧ!!!зАРАНЕЕ ОГРОМНОЕ СПАСИБО!!!
1)Найдите 2 числа, сумма, произведение и частное которых равны. 2)Сколькими способами можно раскрасить 6 граней куба шестью красками так, чтобы по-разному раскрашенные кубики не переходили один в другой или при каком вращении? 3)Паук соединил связной паутиной все восемь ушлов комнаты 3x3x3.Может ли общая длина паутины быть меньше 19? 4)Разрежьте бумажный прямоугольник 1.5смх4см на две части, которыми можно оклеить куб со стороной 1 см. 5)Найдите закономерность и укажите пропущенный член последовательности:0;4;18;48; ? ; 180;... .(пропущенный член это ?) 6)На складе лежат 27 деталей, промаркированных первым и вторым сортом. Детали одинакового сорта весят одинаково, и каждая деталь второго сорта немного легче детали первого сорта, Известно что ровно одна из деталей промаркирована неправильно(но неизвестно какого она сорта), Покажите что ее можно наверняка выявить за три взвешивания на чашечных весах без гирь. 7) Вычислите максимальную площадь лежащего на координатной плоскости многоугольника, дающего в проекциях как на оси координат, так и на прямую у=х отрезки единичной длины. 8)Найдите пересечение двух тетраэдров, вписаных в куб(так что вершины одного тетраэдра-четыре вершины куба и вершины другого-оставшиеся 4 вершины куба, а ребра тетраэдров-диагонали граней куба). Какую часть объема куба составляет это пересечение тетраэлров? 9)Двое играющих по очереди проводят на плоскости несовпадающие красные или синие прямые(цвет каждый выбирает независимо от предыдущих ходов), никакие три из которых не должны проходить через одну точку. После того, как они проведут по 20 прямых, первый игрок подсчитывает количество точек, в которых пересекаются прямые разных цветов, а второй- количество точек, в которых пересекаются прямые одного цвета. Выигрывает тот, у кого окажется больше точек. Может ли один из игроков выиграть независимо от игры другого? 10) Квадратный ящик со стороной 2006 разбит на квадратные ячейки со стороной 1, в каждой из которых лежит по шару. Внешне все шары одинаковы, но ровно один из них радиоактивен. Имеется детектор, которым можно накрыть любые четыре ячейки, образующие квадрат 2х2, и он покажет, имеется ли в ячейках радиоактивный шар. За какое наименьшее число таких проверок можно наверняка найти этот шар? Сообщение отредактировано: lapp - 3.10.2006 5:09 |
![]() ![]() |
Lapp |
![]()
Сообщение
#2
|
![]() Уникум ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 6 823 Пол: Мужской Реальное имя: Лопáрь (Андрей) Репутация: ![]() ![]() ![]() |
10) Квадратный ящик со стороной 2006 разбит на квадратные ячейки со стороной 1, в каждой из которых лежит по шару. Внешне все шары одинаковы, но ровно один из них радиоактивен. Имеется детектор, которым можно накрыть любые четыре ячейки, образующие квадрат 2х2, и он покажет, имеется ли в ячейках радиоактивный шар. За какое наименьшее число таких проверок можно наверняка найти этот шар? Похоже, как тут ни крутись, а 1003^2+2 вынь да положь.. -------------------- я - ветер, я северный холодный ветер
я час расставанья, я год возвращенья домой |
Lapp |
![]()
Сообщение
#3
|
![]() Уникум ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 6 823 Пол: Мужской Реальное имя: Лопáрь (Андрей) Репутация: ![]() ![]() ![]() |
Похоже, как тут ни крутись, а 1003^2+2 вынь да положь.. Уф, успел.. ![]() 1003^2-1+2 = 1003^2-1 = 1006008 в формуле ошибка, заметил volvo (см. ниже) Правильно: 1003^2-1+2 = 1003^2+1 = 1006010 У кого есть еще соображения? -------------------- я - ветер, я северный холодный ветер
я час расставанья, я год возвращенья домой |
Michael_Rybak |
![]()
Сообщение
#4
|
Michael_Rybak ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 1 046 Пол: Мужской Реальное имя: Michael_Rybak Репутация: ![]() ![]() ![]() |
Вы показали, что *достаточно* s/4+1 ходов. Я думаю, еще надо показать, что меньше нельзя.
Сформулируем более общую задачу. Имеем s=2006^2 клеток, из которых одна радиоактивна. За 1 ход можем выбрать *не больше чем* четыре *произвольных* клетки и узнать, есть ли среди них радиоактивная. Определить необходимое кол-во ходов. Становится понятно, что каждой проверкой мы фактически разбиваем множество клеток на 2 группы, и узнаем, в какой из них радиоактивная. Понятно, что нам всегда менее выгоден вариант, когда она оказывается в *большем* из двух множеств, если, конечно, все тестируемые клетки еще не подлежали проверке. Первыми s/4-2 ходами мы, в худшем случае, ничего не найдем, и у нас останется >=8 клеток (больше, если мы, зачем то, проверяли какие-то клетки больше одного раза). Для восьми мы, очевидно, ничего лучшего, чем бинарный поиск, мы не придумаем: делим пополам, выбираем половину, в которой радиоактивная, всего 3 хода. Раз для восьми нужно 3 хода, то и для >=8 нужно >=3. Таким образом, быстрее, чем за s/4-2+3 = s/4+1 нельзя решить задачу *более общую*. Действительно, изначально у нас можно было выбирать не <=4, а ровно 4 (среди которых, в принципе, могут быть и уже проверенные), и не произвольные клетки, а именно образующие квадрат 2х2. А если более узкую задачу можно было бы решить меньше чем за s/4+1 ходов, то можно было бы точно так же решить и более общую. Итак, нижняя граница равна 1003^2+1, а благодаря Lapp'у мы знаем, что верхняя - тоже. |
Lapp |
![]()
Сообщение
#5
|
![]() Уникум ![]() ![]() ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 6 823 Пол: Мужской Реальное имя: Лопáрь (Андрей) Репутация: ![]() ![]() ![]() |
*достаточно* s/4+1 ходов. Я думаю, еще надо показать, что меньше нельзя. Мне кажется, все проще. Пока мы еще совсем не знаем, где шар (ни разу не получили срабатывание датчика) очевидно невыгодно перекрывать зоны наложения сенсора, ибо при этом мы тратим ход на уже известный результат. Поэтому нужно выбрать способ обхода с минимальным перекрытием, если возможно - нулевым. Таких способов много, но они все эквивалентны с нашей точки зрения. Именно это мы и делаем. Остальное - дихотомия. Я что-то упускаю?.. 1003^2-1+2 = 1003^2-1 ![]() ![]() ![]() конечно, плюс... Я всегда говорил, что в арифметике я не силен.. ![]() volvo, спасибо! ![]() Читать так: 1003^2-1+2 = 1003^2+1 = 1006010 -------------------- я - ветер, я северный холодный ветер
я час расставанья, я год возвращенья домой |
![]() ![]() |
![]() |
Текстовая версия | 26.07.2025 21:54 |