IPB
ЛогинПароль:

> Компиляция правил для данного раздела

1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!

> Как интегрировать выражения с радикалами?, Не могу понять
Gerc
сообщение 19.02.2006 0:40
Сообщение #1


Новичок
*

Группа: Пользователи
Сообщений: 14
Пол: Мужской
Реальное имя: Слава

Репутация: -  0  +


Объясните, пожалуйста, как интегрируются выражения вида (картинка в файле). Там не очень понятно написано


Эскизы прикрепленных изображений
Прикрепленное изображение

--------------------
Если лошадь вам сказала, что вы сумасшедший, значит так оно и есть!
 Оффлайн  Профиль  PM 
 К началу страницы 
+ Ответить 
 
 Ответить  Открыть новую тему 
Ответов
Gerc
сообщение 21.02.2006 21:38
Сообщение #2


Новичок
*

Группа: Пользователи
Сообщений: 14
Пол: Мужской
Реальное имя: Слава

Репутация: -  0  +


Фух! Похоже я не вовсем объяснил, что я именно не понимаю. Буду писать подробно, чтобы было понятней, надеюсь хватит терпения дочитать до конца. smile.gif

Ну, вообще то я пытаюсь понять, не что нужно сделать, чтобы синтергировать ту или иную функцию, а прежде всего, суть самого метода интегрирования таких выражений, т.е. его обоснование, откуда что взялось, на чем это основано, т.е. должно плавно вытекать из предыдущих методов интегрирования. Но эта тема (не только на картинке, но и в учебнике) совсем не плавно вытекает из предыдущего (как будто страницу вырвали). Странно, но многие темы, доказательства теорем матана я осваивал сам без взяких проблем по учебнику (когда приходилось пропускать пары). Но с такой бякой я еще не встречался. mad.gif

Ну во первых, такую запись "интеграл от"R(x,корень степени m из (ax+b)/(гамма*у+дельта)) я лично вижу первый раз. Не в школе, не в ВУЗЕ я ее не встречал. Где-то пишут, что это рациональная функция от 2-х аргументов. Но у нас функция от одного аргумента, от Х!
Такой простой пример я взял, чтобы также понять суть этого метода, заглянув с другого угла, чтобы разобраться, каким образом функция синтегрировалась, т.е. вроде ответ правильный, но на каком основании были сделаны эти действия? Ну скажем так, пусть я еще не знаю метода интегрирования выражений, содержащих радикалы, а изучил все до этого, в том числе и метод подстановки. Тогда нам нужно прежде всего определиться, что у нас будет f(t), что t=g(x) и что тогда f(g(x)) (см. определение метода подстановки выше). Судя по тому решению, я сделал вывод, что f(t)=t^2, t=g(x)=корень из (x), f(g(x))=(корень из (х))^2. Если посмотреть, что делается дальше, то можно сказать, что метод подстановки используется неправильно, т.к. по правилу нужно дифференцировать g(x) и умножать на f(g(x)), а в моем простом примере делается наоборот. wacko.gif
И так вопрос: Можно ли интегрировать мой простой пример методом подстановки, если нет, то на основе каких теорем, свойств и т.д это делалось?

Можно взять и более сложный пример: "интеграл от"(х+1/х-1)^(1/3). Повторю еще раз, мне главное выяснить теорию, обоснование на основе теорем, свойств, ранее использованных методов.


--------------------
Если лошадь вам сказала, что вы сумасшедший, значит так оно и есть!
 Оффлайн  Профиль  PM 
 К началу страницы 
+ Ответить 
Lapp
сообщение 22.02.2006 14:55
Сообщение #3


Уникум
*******

Группа: Модераторы
Сообщений: 6 823
Пол: Мужской
Реальное имя: Лопáрь (Андрей)

Репутация: -  159  +


Цитата(Gerc @ 21.02.2006 21:38) *

И так вопрос: Можно ли интегрировать мой простой пример методом подстановки, если нет, то на основе каких теорем, свойств и т.д это делалось?

Итак, ответ: smile.gif
Это есть метод подстановки в его чистейшем и первозданном виде. Он дествительно немного осложнен наличием двухпараметрической функции R, но в целом все равно то же самое.
Начнем с R. Эта буква (забудь про всякие заумные функции - просто обозначение в виде буквы) означает, что под интегралом у тебя стоит некое выражение, которое вообще-то зависит от Х и только от Х, но тем не менее, зависимость эта такова, что либо сам Х стоит в некоторой степени и с некоторыми множителями в числителе или знаменателе (рациональная функция - это частное от деления двух многочленов), либо то выражение, корень из (ax+b)/(cx+d), (здесь я заменил греческие буквы на латынь) стоит в аналогичном виде. "Либо" здесь не исключающее, и в общем случае они оба там стоят smile.gif. Короче, зависимость, в конечном счете только от Х, но вот такая хитрая, когда можно выделить либо сам Х там, либо вот такой корешок еще, встречающийся в разных местах и сам по себе еще и в разной степени.. Наворочено, ничего не скажешь, но все же корень такой, если уж он встретился в одном месте, должен быть во всех остальных местах только одного вида - с теми же a, b, c и d, а также с той же степенью корня. Ну, с этим ясно? Никакой мистики, как видишь, нет, просто обозначения такие. smile.gif

Идем дальше. Теперь про подстановки. Эх, жалко, тут писать трудно формулы с интегралами.. Давай, я буду обозначать интеграл большой латинской S, только жирной: S
Все предельно просто. Ты вправе проводить замену перемнной в подынтегральном выражении, но только соблюдай два правила:
1. правильно расставляй пределы интегрирования;
2. преобразуй dx.

Если ты вводишь новую переменную (скажем, t), то должна быть связь между ней и твоей исходной переменной, х. Я не буду вводить дополнительных названий или букв, назову все своими именами:
x=x(t)
Если ты искал интеграл от функии f(x)
Sf(x)dx
то теперь получаем:
Sf(x(t))dx
Все классно, но только если дифференциал dx раньше был независимым, то теперь x зависит от t. Как связаны дифференциалы между собой, мы знаем еще из науки про производные (пишу для абстрактной функции f(x) ):
df = f'dx
где f' - это производная функции f по х. Ее, как мы знаем, можно записать и в другом виде, а именно
f'=df/dx
Такая запись - это всего лишь запись, но она удобна, поскольку в некоторых случаях дифференциалы можно действительно рассматривать как обычные сомножители, перемножать их и сокращать. Если записать производную в этом виде, то получим:
df = (df/dx)*dx
Из этой формулы ясно видна суть: сократив dx в правой части, получаем тождество, то есть как бы доказываем эту формулу. Но это лирика smile.gif.

Итак, в нашем случае мы имеем зависимость x(t), и соответственно
dx = x'dt
либо
dx = (dx/dt)*dt
Это выражение (любое из них, поскольку это просто разная запись одного и того же), подставляем в наш интеграл:
Sf(x(t))*x'dt
или
Sf(x(t))*(dx/dt)dt
В последней записи особенно явно видны все метаморфозы, которые произошли с нашим интегралом: та же самая f, только с заменой переменной, и тот же самый dx, только мы его домножили и поделили на dt

Вот, собственно, и все. Извини, если мои обозначения отличались от тех, что вам давали. Я старался донести до тебя суть, и если ты ее поймешь - никакие хитрые обозначения тебя не введут в заблуждение smile.gif. Если ты проследишь внимательно, то увидишь, что именно в соответствии с этим методом поступается в той записи на твоей картинке..
Вникай. smile.gif


PS
В моем первом ответе тебе я сказал все то же самое, только кратко.. smile.gif


--------------------
я - ветер, я северный холодный ветер
я час расставанья, я год возвращенья домой
 Оффлайн  Профиль  PM 
 К началу страницы 
+ Ответить 

Сообщений в этой теме


 Ответить  Открыть новую тему 
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия 27.07.2025 8:09
Хостинг предоставлен компанией "Веб Сервис Центр" при поддержке компании "ДокЛаб"