IPB
ЛогинПароль:

> Компиляция правил для данного раздела

1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!

> Теорема Кантора-Бернштейна
K Y S K A
сообщение 7.12.2005 9:33
Сообщение #1


Пионер
**

Группа: Пользователи
Сообщений: 95
Пол: Женский
Реальное имя: Оля

Репутация: -  -1  +


КАК ЭТО ДОКАЗАТЬ???
 Оффлайн  Профиль  PM 
 К началу страницы 
+ Ответить 
 
 Ответить  Открыть новую тему 
Ответов
Lapp
сообщение 7.12.2005 14:42
Сообщение #2


Уникум
*******

Группа: Модераторы
Сообщений: 6 823
Пол: Мужской
Реальное имя: Лопáрь (Андрей)

Репутация: -  159  +


Хм.. Доказательство этой теоремы не уложится в средний размер обычного поста, да и с обозначениями будет тяжело... Формулируется она просто и вообще выглядит довольно очевидной, поэтому всегда хочется ее объяснить на пальцах. Попробую проиллюстрировать доказательство на примере двух отрезков.

Итак, есть два отображения, которые представляют собой простую проекцию. Отрезок А проектируется на В1, а отрезок В - на А1. Первую проекцию называем f, а вторую - g. Конечно, несложно соорудить новую проекцию, которая установит взаимнолднозначное соответствие между А и В, но мы попробуем сконструировать взаимнооднозначное соответствие между А и В (назовем его h), исключительно на основе данных нам f и g. Рассмотрим верхний кусок А, он у меня выделен зеленым. На нем в качестве нового отображения возьмем f. Далее, на следующем отрезке, красном, в качестве h используем отображение, обратное к g, то есть g^-1 (g в минус первой степени). Оно отобразит наш красный отрезок на коричневый отрезок на В. Следующий зеленый отрезок отображаем на соответствующий синий с помощью снова f, а на следующем, красном, снова используем g^-1 и попадем на следующий коричневый... и так далее. Видно, что таким образом кусочно используя два исходных отображения, мы получим новое, h, которое однозначно отобразит А в В.

Этот процесс иллюстрирует Канторово доказательство, в котором вообще-то присутствуют три множества. Одно - зеленые отрезки - это то, для точек которого процесс многочисленных отражений (см. желтые линии, снизу вверх) оканчивается на А, оно называется А-четное. Другое (красное) то, для точек которого отражения заканчиваются на В, это А-нечетное. Есть и третье множество, для точек которого процесс отражений бесконечен, А-бесконечное. В этом примере оно представлено одной точкой - нижней. Для него, как и для А-четного, в качестве h берем f.

Ну, а строгое доказательство в общем виде можно найти в большинстве учебников по ТМ smile.gif

Сообщение отредактировано: lapp - 7.12.2005 14:43


Эскизы прикрепленных изображений
Прикрепленное изображение

--------------------
я - ветер, я северный холодный ветер
я час расставанья, я год возвращенья домой
 Оффлайн  Профиль  PM 
 К началу страницы 
+ Ответить 

Сообщений в этой теме


 Ответить  Открыть новую тему 
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



- Текстовая версия 26.07.2025 21:20
Хостинг предоставлен компанией "Веб Сервис Центр" при поддержке компании "ДокЛаб"