![]() |
1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!
![]() |
setare |
![]() ![]()
Сообщение
#1
|
![]() Бывалый ![]() ![]() ![]() Группа: Пользователи Сообщений: 152 Пол: Женский Репутация: ![]() ![]() ![]() |
Вот задачи, которые нам задали решить, но как решить не сказали и бросили на произвол судьбы. В книгах в библиотеках вообще ничего найти нельзя. Не могли бы вы помочь хотя бы какую то часть решить. Буду вам очень благодарна. Только пожалуйста, умоляю обьясняйте чуть чуть понятнее, потому что я в этом вообще ничго не смыслю. Спасибо огромное!!!
Вот задачи: 1.Какова мощность множества всех корней уравнения x5-2x3+x=0. 2.Доказать, что множество всех счетных последовательностей натуральных чисел имеет мощность континуума. 3.Доказать, что если отношения R1 и R2 рефлексивны, то рефлексивны и отношения R1R2, R1R2, R1-1, R1R2. 4.Найти порядок перестановки (1 2 3 4 5 6 7 8 9) (3 5 7 9 6 8 1 2 4). 5.Найти смежные классы аддитивной группы целых чисел по подгруппе чисел, кратных данному натуральному числу n ( Z + / nZ ). 6.Построить группу симметрий куба. Каков наивысший порядок циклических подгрупп, содержащихся в ней? 7.Найти натуральное число, меньшее 1000, имеющее наибольшее количество делителей. 8. Пусть p-простое число, p>3. Доказать, что если сравнение x2 + x + 1 = 0 (mod p) разрешимо, то p имеет вид 6n +1. Вывести отсюда, что множество простых чисел вида 6n +1 бесконечно. 10. Будет ли множество Z целых чисел подгруппой аддитивной группы, a + bi с целыми a и b ? подкольцом или идеалом в кольце А целых гауссовых чисел, т.е. чисел вида -------------------- Ты спрашиваешь, как я переношу длинные бессонные ночи?Как свеча: как только настает утро, я гасну, тем самым, имея возможность заново загореться.
Нима |
![]() ![]() |
Atos |
![]()
Сообщение
#2
|
![]() Прогрессор ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 602 Пол: Мужской Реальное имя: Михаил Репутация: ![]() ![]() ![]() |
1. Решить уравнение и посчитать число корней. (Если имеются в виду рациональные). Действительных корней же у уравнения пятого порядка всегда 5.
4. Циклы (1 3 7) (3 7 1) (2 5 6 8) (5 6 8 2) (4 9) (9 4) Порядок равен НОК длин цикла, т. е. НОК(3, 4, 2) = 12. 2. Легко можно доказать, что мощность не меньше мощности континуума. Сопоставим каждой бесконечной десятичной дроби из интервала (0,1) счётную последовательность цифр её десятичной записи после запятой. Мощность интервала равна мощности континуума, откуда и следует то, что нам надо. Сложнее будет доказать в обратную сторону. В принципе, идея есть, но сформулировать надо... В общем, вечером посмотрю задания. Сообщение отредактировано: Atos - 3.10.2005 13:42 |
![]() ![]() |
![]() |
Текстовая версия | 26.07.2025 21:16 |