| virt |
12.02.2005 17:57
Сообщение
#1
|
![]() Знаток ![]() ![]() ![]() ![]() Группа: Пользователи Сообщений: 419 Пол: Мужской Репутация: 6 |
Графы можно представлять в виде множества вершин и множества соединяющих их ребер. (Города и дороги их соединяющие)
1. Просмотр вершин графа в некотором фиксированном порядке. общие структуры данных : const Maxn=100; поиск в глубину :
Поиск в ширину: procedure Pw(v:integer); 2. Каркасы (стягивающие деревья) const Maxn=100; Построение стягивающего дерева поиском в глубину: procedure Tree_Depth(v:integer); Построение стягивающего дерева поиском в ширину: procedure Tree_Width(v:integer); Построение всех каркасов графа: const Maxn=100; Построение минимального каркаса методом Краскала: (Исправлено. Присоединенный архив перезалит) Граф задан списком ребер с указанием их весов: program minim_tree_kraskal; Построение минимального каркаса методом Прима: procedure solve; Сообщение отредактировано: volvo - 13.01.2009 11:36 Прикрепленные файлы
graph.zip ( 2.67 килобайт )
Кол-во скачиваний: 2104-------------------- |
![]() ![]() |
| Altair |
31.05.2005 7:01
Сообщение
#2
|
![]() Ищущий истину ![]() ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 4 824 Пол: Мужской Реальное имя: Олег Репутация: 45 |
Поиск кратчайшего пути. Алгоритм Дейкстры
Процедура procedure Deikstr(n:integer; W:graph; u1,u2:integer; находит путь минимального веса в графе G, заданном весовой матрицей (матрица смежности) -W. При этом предполагается, что все элементы Wij неотрицательны. Путь ищется из вершины номер u1 к вершине номер u2 . Для представления веса, равного бесконечности (машинная бесконечность), используется число GM, передаваемое в алгоритм. Это число можно задавать в зависимости от конкретной задачи... модуль UNIT Dijkstra; демонстрационная программа компилятор BP7 (target windows) uses wincrt,dijkstra; В программе,граф считывается из файла. Вот для такого графа: файл должен иметь вид (за машинную бесконечность берется 10000): Цитата 20 0 3 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 0 10000 10000 10000 3 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 0 2 10000 5 1 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 2 0 3 10000 10000 5 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 5 10000 10000 0 10000 10000 3 10000 10000 4 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1 10000 10000 10000 0 10000 2 2 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 5 10000 10000 10000 0 10000 10000 4 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 2 10000 0 2 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 2 10000 2 0 3 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 4 10000 3 0 10000 4 10000 10000 5 10000 10000 10000 10000 10000 10000 10000 10000 10000 4 10000 10000 10000 10000 10000 0 4 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 4 4 0 4 3 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 4 0 10000 10000 3 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 10000 0 10000 10000 3 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 5 10000 10000 10000 10000 0 10000 4 7 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 10000 10000 0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 3 4 10000 0 10000 6 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 7 10000 10000 0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 6 10000 0 -------------------- Помогая друг другу, мы справимся с любыми трудностями!
"Не опускать крылья!" (С) |
virt графы 12.02.2005 17:57
Altair [b]Поиск кратчайших путей.
[color=blue][b]Алгорит... 5.05.2005 15:02
Altair [b]Эйлеров цикл.
Дадим теперь строгое определение... 1.06.2005 21:56
Perfez [b]Топологическая Сортировка Графа
Рассмотрим аци... 20.07.2007 17:07![]() ![]() |
|
Текстовая версия | 27.10.2025 3:32 |