![]() |
1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!
![]() |
мисс_граффити |
![]()
Сообщение
#1
|
![]() просто человек ![]() ![]() ![]() ![]() ![]() ![]() Группа: Модераторы Сообщений: 3 641 Пол: Женский Реальное имя: Юлия Репутация: ![]() ![]() ![]() |
Доброго времени суток.
Наткнулась сегодня на задачку (школьную, 10 класс, стереометрия) - и зависла. Мысли кое-какие есть, но ни во что толковое не оформляются. В цилиндре, у которого высота равна диаметру основания и равна 1, надо разместить три одинаковых шара. Каков их наибольший радиус? Может, кого еще заинтересует... -------------------- Все содержимое данного сообщения (кроме цитат) является моим личным скромным мнением и на статус истины в высшей инстанции не претендует.
На вопросы по программированию, физике, математике и т.д. в аське и личке не отвечаю. Даже "один-единственный раз" в виде исключения! |
![]() ![]() |
TarasBer |
![]()
Сообщение
#2
|
![]() Злостный любитель ![]() ![]() ![]() ![]() ![]() Группа: Пользователи Сообщений: 1 755 Пол: Мужской Репутация: ![]() ![]() ![]() |
> у меня на плоскости 2.89 примерно влезло...
В квадрат со стороной один? r*(1+1+1/sqrt(2)+sqrt(3)/sqrt(2))=1 r*(2+(sqrt(2)+sqrt(6))/2)=1 r = (2+(sqrt(2)+sqrt(6))/2)**-1 ![]() А в пространстве мысль такая. Если в цилиндре с высотой 2 и радиусом 1 удастся расположить 3 точки так, чтобы расстояния между ними были 2R, то, обрастив эти точки мясом, получим в цилиндре высотой 2*(1+R) и радиусом (1+R) три шара радиусом R, или, после масштабирования, в цилиндре высотой и диаметром 1 три шара радиуса R/(1+R)/2 А эти три точки я решил брать так. Понятно, что одна из них должна быть на верхнем основании, и ещё одна на нижнем, иначе легко раздвинуть. Ну вот, я и брал точки так: в полярной системе координат, в которой основаниям цилиндра соответствуют +-1, одна точка ровно на высоте 0 с угловой координатой 0, другие две на высоте +-1 с угловой координатой +-икс. Составив уравнение на синусквадрат этого икса, после всяких вычислений я получил то, что получил. Почему это оптимальный вариант? Не знаю, мне так кажется, можно составить уравнение и для высоты a, и углы брать +-b, но как правило, максимум посередине. -------------------- |
![]() ![]() |
![]() |
Текстовая версия | 18.07.2025 14:46 |