![]() |
1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!
![]() |
Кошка |
![]()
Сообщение
#1
|
Группа: Пользователи Сообщений: 9 Пол: Женский Реальное имя: Светлана Репутация: ![]() ![]() ![]() |
Помогите, плиз, решить задачи по доп. главам анализа
1. Док-ть, что кол-во всех пятёрок, которые можно нарисовать на плоскости (непересекающихся, разных размеров), - множество мощности континуума, а множество всех восьмёрок(непересекающихся) не более чем счётно 2. Док-ть, что множество всех непересекающихся следов(множеств трёх отрезков из одной точки) не более чем счётно 3. Пусть r1=1, r2n=rn +1, r(2n+1)=1/r2n, функция f из n в rn – биекция. Доказать, что функция f является биекцией из множества натуральных в множество рациональных чисел. |
![]() ![]() |
andriano |
![]()
Сообщение
#2
|
Гуру ![]() ![]() ![]() ![]() ![]() Группа: Пользователи Сообщений: 1 168 Пол: Мужской Реальное имя: Сергей Андрианов Репутация: ![]() ![]() ![]() |
У спирали должно быть ограничение на шаг (т.е. расстояние между двумя соседними витками) такое, чтобы никакой шестиугольник не мог поместиться между витками. Как вариант - спираль с постоянным шагом, но не единственная, а мношество спиралей, начинающееся с единственной, к которой по мере ее раскрутки (и уменьшения кривизны) добавляются другие спирали "параллельные" данной.
Возможен вариант и с разбиением плоскости на счетное количество конечных регионов, внутри каждого из которых своя спираль. В ЛЮБОМ случае ход спирали никак не зависит от имеющихся либо не имеющихся в данном месте шестиугольников, поэтому наличие бесконечного их количества в конечной области пространства никак не может "остановить" спираль. Многоугольники подсчитываются в том порядке, в котором их пересекла спираль. Если многоугольник будет пересечен спиралью более одного раза (а это непременно случится), то либо считать его несколько раз (что ничего не меняет), либо учитывать только первое пересечение. |
![]() ![]() |
![]() |
Текстовая версия | 24.06.2025 0:37 |