| Tony |
2.01.2010 23:18
Сообщение
#1
|
|
Новичок ![]() Группа: Пользователи Сообщений: 17 Пол: Мужской Репутация: 1 |
Здравствуйте.
Собственно задача: Имеется сильно связный неориентированный невзвешенный граф. Требуется найти такую вершину (центр), чтобы кратчайшие расстояния от нее до всех остальных вершин графа были, по-возможности, минимальны.(по-моему не совсем корректно, поэтому скажу иначе: поиск в ширину, пущенный от нее, должен сделать минимальное число "волн"). Естественно, решение за O(n^2) очевидно (просто серия из n поисков в ширину), но при этом время работы алгоритма слишком велико. Собственно, был бы рад любым идеям по реализации данного алгоритма ЗЫ Из собственных мыслей: 1.) Взять произвольную вершину. Пустив bfs из нее, найти наиболее удаленную от нее вершину ( пусть она будет называться L ). Пустив bfs от L, найти наиболее удаленную от нее вершину ( R ). Пустить одноременно два bfs'а от L и R и ждать их пересечения. Центр, имхо, будет лежать где-то в множестве вершин, вошедших в это пересечение. (но опять - таки их слишком много) 2.) Попытаться использовать данные предыдущих поисков. Но эта идея по-моему бесперспективна... |
![]() ![]() |
| Tony |
5.01.2010 23:06
Сообщение
#2
|
|
Новичок ![]() Группа: Пользователи Сообщений: 17 Пол: Мужской Репутация: 1 |
Цитата СТОП. Это для олимпиады? Тогда мы не будем помогать. Ну и что с того? Это же чистая теория графов... Вопрос в том, знаешь ты как это делается, или нет. А если я к примеру не знаю, как Дейкстра пишется? Что мне, самому ее придумывать?)) |
| andriano |
5.01.2010 23:27
Сообщение
#3
|
|
Гуру ![]() ![]() ![]() ![]() ![]() Группа: Пользователи Сообщений: 1 168 Пол: Мужской Реальное имя: Сергей Андрианов Репутация: 28 |
А если я к примеру не знаю, как Дейкстра пишется? Что мне, самому ее придумывать?)) Во-первых, Дейкстра - он. И алгоритм, кстати, - тоже.Да и в придумывании велосипедов (особенно для олимпиады) ничего плохоого нет. Я, например, и придумал и написал несколько реализаций "Дейкстры" до того, как узнал, что этот алгоритм, оказывается, имеет имя собственное (причем, что самое обидное - не мое |
Tony Поиск центра графа 2.01.2010 23:18
Tony Неужели ни у кого нет никаких идей? Может условия ... 5.01.2010 4:14
TarasBer Условие-то понятно, просто графы - это вообще не с... 5.01.2010 20:44
volvo Какой же у тебя граф, если на нем O(n2) слишком до... 5.01.2010 21:19
TarasBer Даже когда известны ВСЕ расстояния между всеми вер... 5.01.2010 21:36
Tony
Количество вершин невелико(порядка тысячи). Дело... 5.01.2010 22:52
TarasBer > время работы ограничено двумя секундами
СТОП... 5.01.2010 22:54
TarasBer Если это задача с реальной олимпиады, в которой ты... 5.01.2010 23:28
Tony
Возможно, алгоритм Дейкстры не самый удачный при... 5.01.2010 23:39![]() ![]() |
|
Текстовая версия | 8.12.2025 8:34 |