![]() |
![]() |
TarasBer |
![]()
Сообщение
#1
|
![]() Злостный любитель ![]() ![]() ![]() ![]() ![]() Группа: Пользователи Сообщений: 1 755 Пол: Мужской Репутация: ![]() ![]() ![]() |
Собсна задача такая. Есть трёхмерный вектор v. Найти векторы v1 и v2, которые перпендикулярны v и друг другу, и имеют ту же длину, что и v. На плоскости аналогичная задача элементарна - вектору (x, y) сопоставляется (-y, x), сопоставление корректно и для нулевой длины. В трёхмерном пространстве такой красивой формулы нету - в топологии есть известная "теорема о причёсывании ежа", говорящая о том, что на поверхности чётномерной сферы не существует ненулевого непрерывного векторного поля. По сути v/abs(v) - точка на двухмерной сфере, v1 и v2 - касательные векторы в точке v. Нам как раз нужно ненулевое векторное поле. Непрерывной зависимости тут не построить, ну и ладно. Вопрос в том, чтобы найти v1 и v2 наиболее оптимальным способом. Вот моё решение "в лоб", мне оно не нравится:
-------------------- |
![]() ![]() |
![]() |
Текстовая версия | 15.07.2025 10:53 |