
Threaded representation of binary trees

Notice three important facts:

(a) the traversal algorithms studied so far spend most of their time manipulating a stack;

(b) the storage space required for the stack is potentially large;

(c) the majority of pointers (LLINK and RLINK) in any binary tree are nil.

Threaded representation obviates the need for a stack, making use of pointer fields which would
otherwise have the value nil. The most common convention for threaded representation is:

if the left subtree is empty, LLINK points to the in-order predecessor

if the right subtree is empty, RLINK points to the in-order successor.

These special pointers are known as threads. Here is an example of a threaded binary tree:

But any program examining the tree must be able to distinguish between a branch and a thread.
So we introduce two additional fields into each node giving us, for threaded trees, nodes of the
following form:

LTAG and RTAG obviously need be only one-bit fields. Because of word-length considerations, these
fields will often not make any difference to the amount of storage used per node; the convention
adopted, for instance, might be to use negated pointer values to indicate threads. The convention
used in these notes is:

if LTAG = 0, LLINK points to the left child;
if LTAG = 1, LLINK points to the in-order predecessor;
if RTAG = 0, RLINK points to the right child;
if RTAG = 1, RLINK points to the in-order successor.

But this is only one of a number of ways of threading a tree. For example, a common method is
right-threading, where each node has four fields (LLINK, INFO, RTAG, RLINK). LLINK is nil if the left
subtree is empty, and RTAG and RLINK are as above.
(Many algorithms only require right-threading.)

17



In the representation of a threaded binary tree, it is convenient to use a special node HEAD —
the “list” head — which is always present, even for an empty tree, when its value is:

HEAD

Conventionally, HEAD.RLINK = HEAD and HEAD.RTAG = 0 for any threaded binary tree. The tree
shown earlier would therefore be represented as:

HEAD

Without having to use a stack, it is a simple matter to traverse a threaded binary tree in in-order.
Further, given a pointer P to any node in the tree, we can find its in-order successor directly as
follows:

Pointer insucc(Pointer P)
{ if (P↑RTAG = 1)

return P↑RLINK;
else
{ P ← P↑RLINK;

while (P↑LTAG = 0)
P ← P↑LLINK;

return P;
}

}

Similarly, a function to produce the pre-order successor:

Pointer presucc(Pointer P)
{ if (P↑LTAG = 0)

return P↑LLINK;
else
{ while (P↑RTAG = 1)

P ← P↑RLINK;
return P↑RLINK;

}
}
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Using repeated calls to either of these functions, we can start traversal from any node. Starting
from HEAD, a complete in-order traversal is:

R ← insucc(&HEAD);
while (R 6= &HEAD)
{ VISIT(R);

R ← insucc(R);
}

and similarly for pre-order. Both pre-order and in-order are thus achieved more efficiently with a
threaded binary tree than with a normal binary tree and a stack. In contrast, post-order traversal
is complex and inefficient if a stack is not used. See Knuth (page 561, exercise 19).

Insertion of nodes

The requirement for the insertion of a node into a binary tree may be stated thus:

either (right-insertion)

“if *P has an empty right subtree, attach node *Q as the right subtree of *P;
otherwise insert *Q between *P and *(P↑RLINK),”

or (left-insertion)

“if *P has an empty left subtree, attach node *Q as the left subtree of *P;
otherwise insert *Q between *P and *(P↑LLINK).”

Inserting *Q between *P and *R will be interpreted as the first of the following alternatives rather
than the second:

Initial state this not this

The insertion operations are almost trivial for an unthreaded binary tree. For a threaded tree they
turn out to be reasonably straightforward. The following is for right-insertion:

Q↑RLINK ← P↑RLINK;
Q↑RTAG ← P↑RTAG;
Q↑LLINK ← P;
Q↑LTAG ← 1;
P↑RLINK ← Q;
P↑RTAG ← 0;
if (Q↑RTAG = 0)

insucc(Q)↑LLINK ← Q;

Note that in many machine representations RLINK/RTAG can be set by a single machine instruction,
making this an efficient process provided the in-order successor function insucc(Q) is not called;
and this function will never be called when Q is inserted as a leaf (which it usually is during initial
set-up). A similar algorithm can be defined for left-insertion.
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Successor functions applied to an unthreaded binary tree

For a threaded binary tree, it is possible to find the pre-order or in-order successor of any given node
without performing a complete tree traversal. For an unthreaded tree, the functions presuccU(P)
and insuccU(P) must rely on previous traversal history in a stack (unless they are to be wildly
inefficient), and clearly the parameter P is redundant since what we must ask for is the successor
of the node we got last time. This leads to the conclusion that, for unthreaded trees, the successor
functions are really calls to co-routines (or co-functions) — with resumption of the calling pro-
gram substituted for VISIT. However, it can be convenient to think of these successor functions as
subroutines (or functions) and this can be realised by:

(a) providing every binary tree with a list-head, rather than a tree pointer

(b) adopting the convention that, for an unthreaded tree, the head node is of the form:

(c) calling the function first to find the successor of the head (which, in both cases, will give the
first node in the appropriate traversal order)

(d) ensuring that the calling program recognises the end of the traversal by being given the value
HEAD by the function. (If it does not recognise this, another traversal will begin when the
function is next called.)

The algorithms that follow make use of an auxiliary stack A. If we wish to suspend traversal
of one tree while undertaking a complete traversal of another, we may use stack A in the nested
traversal by making some small changes to the function; for this reason the initial state of A is
undefined. On the first call, the parameter INIT is a pointer to the head of the tree; thereafter its
value is nil, since we are simply asking for the successor of the node we got last time we called
the function. Since it is necessary that the contents of the stack A and the pointer P to the last
node “visited” are preserved from one call of the function to the next, they are defined as static
variables.

Pointer presuccU(Pointer INIT)
// pre-order successor for an unthreaded binary tree
{ static Pointer P;

static Pointer_stack A;
if (INIT 6= nil) P ← INIT;
if (P↑LLINK 6= nil)
{ STACK(A,P);

P ← P↑LLINK;
}
else
{ while (P↑RLINK = nil)

P ← UNSTACK(A);
P ← P↑RLINK;

}
return P;

}
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Pointer insuccU(Pointer INIT)
// in-order successor for an unthreaded binary tree
{ static Pointer P;

static Pointer_stack A;
if (INIT 6= nil) P ← INIT;
if (P↑RLINK = nil)

P ← UNSTACK(A);
else
{ P ← P↑RLINK;

while (P↑LLINK 6= nil)
{ STACK(A,P);

P ← P↑LLINK;
}

}
return P;

}

To erase a binary tree

In these algorithms, the nodes of the tree are returned one by one to the storage pool. The reasons
for selecting the in-order traversal sequence for this purpose should be clear:

// For an unthreaded tree
Q ← insuccU(&HEAD);
while (Q 6= &HEAD)
{ R ← insuccU(nil);

RELEASE(Q);
Q ← R;

}
HEAD.LLINK ← nil;

// For a threaded tree
Q ← insucc(&HEAD);
while (Q 6= &HEAD)
{ R ← insucc(Q);

RELEASE(Q);
Q ← R;

}
HEAD.LLINK ← &HEAD;
HEAD.LTAG ← 1;
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To thread an unthreaded binary tree

Assume that the layout of each node is that appropriate to a threaded tree, i.e., the LTAG and RTAG
fields are present in all nodes including HEAD, but that in the initial (unthreaded) version, these
fields are not used, and a node with an empty left or right subtree has LLINK = nil or RLINK = nil
(except for HEAD.RLINK).

void ThreadTree(Node HEAD)
{ Pointer Q, R;

Q ← &HEAD:
R ← insuccU(&HEAD);
InsertThread(Q, R);
while (R 6= &HEAD)
{ Q ← R;

R ← insuccU(nil);
InsertThread(Q, R);

}
}

void InsertThread(Pointer q, Pointer r)
{ if (q↑RLINK = nil)

{ q↑RLINK ← r;
q↑RTAG ← 1;
r↑LTAG ← 0;

}
else // (r↑LLINK = nil)
{ r↑LLINK ← q;

r↑LTAG ← 1;
q↑RTAG ← 0;

}
}
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